ijaers social
facebook
twitter
Blogger
google plus

International Journal of Civil, Mechanical and Energy Science

ijcmes google ijcmes academia ijcmes rootindexing ijcmes reddit ijcmes IIFS ijcmes research bib ijaers digg ijcmes tumblr ijcmes plurk ijcmes I2OR ijcmes ASI ijcmes slideshare ijcmes open jgate ijcmes exactseek ijcmes Scrub the web ijcmes entireweb ijcmes speech counts ijcmes bibsonomy

Steel Corrosion by Air: South of the Sahara( Vol-5,Issue-2,March 2019 )

Author(s):

George M. Tetteh, Andrew T. Tetteh

Keywords:

Steel, corrosion, iron, Sahara.

Abstract:

Steel is enriched iron (74.5-98.4% Fe) with major metal components and trace elements but its impurities affect the strength. Exposure to an electrolytic air/solution in the atmosphere oxidises the iron component into iron oxides to cause corrosion which speeds up after a long period of exposure at critical pH range of 7.8<pH >5.5. This deterioration may occur uniformly or unevenly when a potential difference is created which may show defects of various textures as pits. Based on the concentration of chlorite, corrosion either commences at the outer or inner rim. Aggressive local corrosion may occur within cracks and crevices. Weathering of rocks could also release into the air and rain, soluble salts which may include sodium chloride. Fine dust which is more severe during the Harmattan over the region south of the Sahara Desert, usually contains sulphide and various salts that could reduce humidity levels. Hence in the Sahel regions, the first rainwater contains also inorganic anions such as NO3- and SO42- while suspended dust in the air from soil may have elevated levels of Cl− which promotes corrosion. The rate of electrochemical reactions, diffusion processes and increase in temperature also speed up rate of corrosion.

ijaers doi crossrefDOI:

10.22161/ijcmes.5.2.1

Cite This Article:
Show All (MLA | APA | Chicago | Harvard | IEEE | Bibtex)
Paper Statistics:
  • Total View : 665
  • Downloads : 31
  • Page No: 01-06
Share:
References:

[1] Jibrin, M. U. and Ejeh, S. P. (2013). Chemical composition of reinforcing steel bars in the Nigerian construction industry. International Journal of Civil & Environmental Engineering, Vol. 13(01), p. 1-7.
[2] Anon. (2019) World Steel Grades (2019). ASTM A36 Steel Composition, Properties, Hardness & Equivalent. https://www.worldsteelgrades.com/astm-a36-steel/ January 14, 2019.
[3] Merola, H-W., Cheng, K. Schwenzfeier, K. Kristiansen, Y.-J., Chen, H. A., Dobbs, J. N. Israelachvili, and Valtiner, M. (2017). In situ nano- to microscopic imaging and growth mechanism of electrochemical dissolution (e.g., corrosion) of a confined metal surface. Proceedings of the National Academy of Sciences. https://phys.org/news/2017-09-nanoscale-glimpse-crevice-pitting-corrosion.html#jCp
[4] Zadorozne, N. S., Giordano, C. M., Rodríguez, M. A., Carranza, R. M. and Rebak, R. B. (2012). Crevice corrosion kinetics of nickel alloys bearing chromium and molybdenum. Electrochimica Acta, Vol. 76, p. 94-101.
[5] Kondo, Y. (1989). Prediction of fatigue crack Initiation life based on pit growth. Corrosion, Vol. 45, p. 7-11.
[6] Hoeppner, D. W., Grimes, L., Hoeppner, A., Ledesma, J., Mills, T. and Shah, A. (1995). Corrosion and fretting as critical aviation safety issues: case studies, facts, and figures. Proc. 18th Symposium of the International Committee on Aeronautical Fatigue, Melbourne, Australia, Vol. 1. p. 87-106.
[7] Roberge, P. (2008). Corrosion Engineering. Principles and Practice. McGraw Hill, Chicago, IL.
[8] Rowe, L. C. (1976). Measurement and evaluation of pitting corrosion. Galvanic and Pitting Corrosion - Field and Laboratory Studies. ASTM STP 576, American Society for Testing and Materials. p. 203-216.
[9] Băicean, S., Buciumeanu, M. and Palaghian, L. (2011). Modelling of some degradation processes by corrosion fatigue of metallic surfaces. The Annals of Dunărea De Jos University of Galaţifascicle 2011, VIII, Tribology, 2011, Vol. XVII (1), p. 1221-4590.
[10] Dolley, E. J. and Wei, R. P. (1999). The effect of frequency on chemically short-crack behavior and its impact on fatigue life. The Third Joint FAA/DoD/NASA Conference on Aging Aircraft, 20-23 September, 1999, Albuquerque N. M.
[11] Saha, J. (2010). Cost effective ways to protection of steel structures from environments. http://steel-insdag.org/Documents/Corrosion_Protection.pdf
[12] Prasanna, R. (2016). Essar Projects (India), Ltd. http://www.materialsperformance.com/articles/coating-linings/2016/02/effect-of-humidity-on-surface-preparation-and-coating-application.
[13] Heldtberg, M., MacLeod, I. D. and Richards V. L. (2004). Corrosion and cathodic protection of iron in seawater: a case study of the James Matthews (1841). Proceedings of Metal. 2004 National Museum of Australia Canberra ACT. p. 75-87.
[14] Anon. (2013). Background paper for the ARCC West Africa regional climate change vulnerability assessment. Contributors: Baptista, S. Brottem, L. de Sherbinin, A. Edquist, M. Fischer, A., Levy, M. Schnarr, E., Simon, C. Sundareshwar, P. V Trzaska, S., 104 pp. https://www.climatelinks.org/sites/default/files/asset/document/Background%2520Paper%2520-%2520West%2520Africa%2520Final.pdf
[15] Anon. (2016). U.S. Geological Survey Earth Resources Observation and Science (USGS EROS) Center. https://eros.usgs.gov/westafrica/node/157
[16] Nicholson, S. E. (2013). The West African Sahel: a review of recent studies on the rainfall regime and its Interannual variability. Hindawi Publishing Corporation, Vol. 2013, p. 1-32.
[17] Anon. (2018). Climate – Ghana. https://www.climatestotravel.com/climate/ghana
[18] Bessoles, B. (1977). Geologie de l’Afrique – Le craton Ouest Africain, Memoire B.R.G.M., France, 403 pp.
[19] Wright, J. B. (1985). Geology and Mineral Deposits of West Africa, Allen and Unwin, London, 189 pp.
[20] Bonhomme, M (1962). Contribution à l’étude Géochronologique de la plate-forme de l’Ouest Africaine. In Leube, A., Hirdes, W. Mauer, R., and Kesse, G. O. (ed.), The Early Proterozoic Birimian Supergroup of Ghana and Some Aspects of its Associated Gold Mineralisation, Precambrian Research, Vol. 46, p. 139-165.
[21] Milési, J. P., Ledru, P., Feybesse, J. L., Dommanget A. and Marcoux, E. (1992). Early Proterozoic ore deposits and tectonics of the Birimian Orogenic Belt, West Africa. Precambrian Research, Vol. 58, p. 305-344.
[22] Markwitz, V. Hein, K. A. A. and Miller, J. (2016). Compilation of West African mineral deposits: Spatial distribution and mineral endowment. Precambrian Research, Vol. 274, p. 61-81.
[23] Badea, G. E. Cret, P. M. Lolea, A. and Setel (2011). Studies of carbon steel corrosion in atmospheric conditions. Acta Technica Corviniensis – Bulletin of Engineering, Tome IV, p. 25-28.
[24] Salas, B.V., Wiener, M. S., Badilla, G. L., Beltran, M. C., Zlatev, R., Stoycheva, M., Diaz, J. de D. O., Osuna, L. V. and Gaynor, J. T. (2012). H2S pollution and its effect on corrosion of electronic components. License in Tech. http://creativecommons.org/licenses/by/3.0)
[25] Dovlo, E. K. (2016). Seasonal variations in temperature and salinity in the Gulf of Guinea. Journal of Aquaculture & Marine Biology, Vol. 4(2), p. 1-6.
[26] Munns, R. (2002) Comparative physiology of salt and water stress Plant, Cell and Environment, Vol. 25, p.239-250.
[27] Ambler and Bain (1955). Journal of Applied Chemistry., 5, pp. 437
[28] Mardhiah I., Norhazilan M. N., Nordin Y., Arman A., Rosilawati, M. R., Ahmad S. A. R. (2014). The effect of pH and temperature on corrosion of steel subject to sulphate-reducing bacteria. Journal of Environmental Science and Technology, Vol. 7(4), p. 209-217.
[29] Ma, H. Y. Yang, C. Li, G. Y. Guo, W. J. S. Chen, H. and Luo, J. L. (2003). Influence of nitrate and chloride ions on the corrosion of iron, Corrosion, Vol. 59(12), p. 1112-1119.
[30] Burnett, W. H., Sandroff, F. S. and D’Edigo, and S. M. (1992). Circuit failure due to fine mode particulate air pollution. (Bellcore, Red Bank, New Jersey), The 18th International Symposium for Testing & Failure Analysis, Los Angeles, California, USA, 17-23 October 1992. p. 329-333.
[31] Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C-U., Aas, W., Baker, A., Bowersox, Van C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S. Hara, H., Khodzher, T., Mahowald, N. M. and Reid, N. W. (2014). A global assessment of precipitation chemistry and deposition of sulphur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment, Vol. 93, p. 3-100.
[32] Akoto, O., Darko, G., and Nkansah, M. A. (2011) Chemical composition of rainwater over a mining Area in Ghana. International Journal of Environmental Research, Vol. 5(4), p. 847-854.
[33] Desboeufs, K., Journet, E., Rajot, J.-L. Chevaillier, S., Triquet, S., Formenti, P. and Zakou, A. (2010). Chemistry of rain events in West Africa: evidence of dust and biogenic influence in convective systems. Atmospheric Chemistry and Physics, Vol. 10, p. 9283-9293.
[34] Pelig-Ba, K. B. Parker, A., Price, M. and Pelig-B, K. B. (2001). Elemental contamination of rainwater by airborne dust in Tamale township area of the Northern Region of Ghana. Environmental Geochemistry and Health. December 2001, Vol. 23(4), p 329-342.
[35] Jimoh, W. L. O. (2012). Chemical composition and mineralogy of Harmattan dust from Kano and Zaria cities in Northern Nigeria. Research Journal of Environmental and Earth Sciences, Vol. 4(4), p. 428-433.
[36] Eneji, I. S., Adams, I. U. and Julius, K. A. (2015). Assessment of heavy metals in indoor settled Harmattan dust from the University of Agriculture Makurdi, Nigeria. Open Journal of Air Pollution, Vol. 4, p. 198-207.
[37] Owusu-Boateng, G. and Gadogbe, M. K. (2016). Variation in the quality of harvested rainwater from source to storage in a water-stressed community in Ghana. American Journal of Water Science and Engineering; Vol. 2(4), p. 20-28.
[38] Ndifreke, E. W. and Tighiri, H. O. (2015). Quality Studies of Rainwater in Uyo Municipality, Nigeria. International Journal of Scientific & Engineering Research, Vol. 6(4) p. 1569-1573.
[39] Egwuogu, C. C., Okeke, H. U., Emenike, H. I. and Abayomi, T. A. (2016). Rainwater quality assessment in Obio/Akpor LGA of River State Nigeria. International Journal of Science and Technology. Vol. 5(8), p. 374-381.
[40] Oberthür, T., Weisser, T., Amanor, J. A. and Chryssoulis (1997).Mineralogical siting and distribution of gold in quartz veins and sulphide ores of Ashanti mine and other deposits in Ashanti belt of Ghana: genetic implications. Mineralium Deposita, Vol. 32, p. 2-15.